资源类型

期刊论文 507

会议视频 5

年份

2023 27

2022 38

2021 31

2020 22

2019 39

2018 19

2017 17

2016 22

2015 27

2014 33

2013 15

2012 32

2011 30

2010 25

2009 24

2008 22

2007 35

2006 11

2005 12

2004 4

展开 ︾

关键词

能源 5

原位统计分布分析 3

DX桩 2

Weibull分布 2

分布特征 2

应力 2

应力波 2

应力状态 2

强度理论 2

正态云模型 2

残余应力 2

温度分布 2

空间分布 2

5% 法 1

ADV 1

Arrhenius模型 1

CFD 1

CMAQ模型 1

COVID-19 1

展开 ︾

检索范围:

排序: 展示方式:

Shear stress distribution prediction in symmetric compound channels using data mining and machine learning

Zohreh SHEIKH KHOZANI, Khabat KHOSRAVI, Mohammadamin TORABI, Amir MOSAVI, Bahram REZAEI, Timon RABCZUK

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1097-1109 doi: 10.1007/s11709-020-0634-3

摘要: Shear stress distribution prediction in open channels is of utmost importance in hydraulic structural engineering as it directly affects the design of stable channels. In this study, at first, a series of experimental tests were conducted to assess the shear stress distribution in prismatic compound channels. The shear stress values around the whole wetted perimeter were measured in the compound channel with different floodplain widths also in different flow depths in subcritical and supercritical conditions. A set of, data mining and machine learning algorithms including Random Forest (RF), M5P, Random Committee, KStar and Additive Regression implemented on attained data to predict the shear stress distribution in the compound channel. Results indicated among these five models; RF method indicated the most precise results with the highest value of 0.9. Finally, the most powerful data mining method which studied in this research compared with two well-known analytical models of Shiono and Knight method (SKM) and Shannon method to acquire the proposed model functioning in predicting the shear stress distribution. The results showed that the RF model has the best prediction performance compared to SKM and Shannon models.

关键词: compound channel     machine learning     SKM model     shear stress distribution     data mining models    

Prediction of the shear wave velocity

Amoroso SARA

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 83-92 doi: 10.1007/s11709-013-0234-6

摘要: The paper examines the correlations to obtain rough estimates of the shear wave velocity from non-seismic dilatometer tests (DMT) and cone penetration tests (CPT). While the direct measurement of is obviously preferable, these correlations may turn out useful in various circumstances. The experimental results at six international research sites suggest that the DMT predictions of from the parameters (material index), (horizontal stress index), (constrained modulus) are more reliable and consistent than the CPT predictions from (cone resistance), presumably because of the availability, by DMT, of the stress history index .

关键词: horizontal stress index     shear wave velocity     flat dilatometer test     cone penetration test    

An investigation on stress distribution effect on multi- piezoelectric energy harvesters

Hailu YANG, Dongwei CAO

《结构与土木工程前沿(英文)》 2017年 第11卷 第3期   页码 301-307 doi: 10.1007/s11709-017-0404-z

摘要: With the fast development of piezoelectric materials and due to its green and renewable characteristics, the piezoelectric energy harvesting technology has been paid more and more attention by pavement engineers. The stress distribution will significantly affect the piezoelectric material performance. In this paper, the effects of multiple piezoelectric elements on the generation of electrical energy and output power are studied. In the case of constant external load, the number of the piezoelectric units does not necessarily produce more energy. When the same multi piezoelectric units work together, if the stress state of the piezoelectric units is different, the total output energy affected by the connection mode. For uneven stress distribution, the optimal output mode is that each of the piezoelectric units rectified before connected in parallel.

关键词: piezoelectric transducer     uneven stress     impedance matching     optimal energy output    

Bridging finite element and deep learning: High-resolution stress distribution prediction in structural

Hamed BOLANDI; Xuyang LI; Talal SALEM; Vishnu Naresh BODDETI; Nizar LAJNEF

《结构与土木工程前沿(英文)》 2022年 第16卷 第11期   页码 1365-1377 doi: 10.1007/s11709-022-0882-5

摘要: Finite-element analysis (FEA) for structures has been broadly used to conduct stress analysis of various civil and mechanical engineering structures. Conventional methods, such as FEA, provide high fidelity results but require the solution of large linear systems that can be computationally intensive. Instead, Deep Learning (DL) techniques can generate results significantly faster than conventional run-time analysis. This can prove extremely valuable in real-time structural assessment applications. Our proposed method uses deep neural networks in the form of convolutional neural networks (CNN) to bypass the FEA and predict high-resolution stress distributions on loaded steel plates with variable loading and boundary conditions. The CNN was designed and trained to use the geometry, boundary conditions, and load as input to predict the stress contours. The proposed technique’s performance was compared to finite-element simulations using a partial differential equation (PDE) solver. The trained DL model can predict the stress distributions with a mean absolute error of 0.9% and an absolute peak error of 0.46% for the von Mises stress distribution. This study shows the feasibility and potential of using DL techniques to bypass FEA for stress analysis applications.

关键词: Deep Learning     finite element analysis     stress contours     structural components    

Shear assessment of compression flanges of structural concrete T-beams

Bj?rn SCHüTTE,Viktor SIGRIST

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 354-361 doi: 10.1007/s11709-014-0082-z

摘要: In T-beams the force transfer from the web into the flange has to be studied. The general design procedure is based on a strut-and-tie (or a stress field) model which comprises spreading compressive and transverse tensile forces. As is known, strut-and-tie models represent the force flow within a structural member at ultimate. This procedure is sufficient for design purposes and in general, leads to safe results. For the assessment of a structure it may be worthwhile to improve the accuracy. For this purpose both web and flange have to be looked at more in detail. An advanced method for the analysis of webs in shear is the Generalized Stress Field Approach [ ]. This approach can be utilized for treating flanges, where the classical assumptions have to be adapted; in particular by considering the strain dependence of the concrete compressive strength and thus, defining a representative strain value. In the present contribution background and details of these aspects are given, and the corresponding calculation procedure is described. Theoretical results are compared with experimental data and show a reasonably good agreement. However, as the number of sufficiently documented tests is very limited no concluding findings are attained.

关键词: concrete structures     structural assessment     stress field analysis     shear    

非饱和土的塑性体应变与剪应变的相互作用原理

王靖涛

《中国工程科学》 2007年 第9卷 第11期   页码 11-15

摘要:

将岩土塑性体应变与剪应变的相互作用原理拓展到了非饱和土领域。除了塑性体应变与剪应变的相互作用外,在非饱和土中出现了两类新的相互作用,吸力-塑性体应变和孔隙气压力-塑性体应变。吸力具有二重性质,其对塑性体应变作用包括两个相反的方面。基于吸力性质,阐明了非饱和土的一些独特的性质,诸如有效应力参数的物理涵义,吸力对体积变化和前期固结压力的影响和湿陷机理等。另外,应用拓展的塑性体应变与剪应变相互作用原理,从理论上证明了非饱和土的临界状态线是存在的和唯一的,以及它与应力历史无关。

关键词: 塑性体应变与剪应变的相互作用原理     非饱和土     基质吸力     有效应力原理    

DX桩桩周土应力场分布的模型试验研究

唐松涛,陈立宏,袁希雨

《中国工程科学》 2012年 第14卷 第1期   页码 105-112

摘要:

通过室内小比尺的模型试验,可以进一步为确定DX桩沉降计算公式提供必要的依据。在小型模型试验箱中,通过采用杠杆加砝码的装置对22 mm桩径的DX桩在砂土中进行研究,测定单桩的桩顶荷载-桩顶位移曲线,确定承载力,并与相同情况下的直孔桩进行对比;同时,利用微型土压力盒测定土中应力变化,研究荷载在土中的传递规律。试验结果表明,DX桩的承载力及沉降特性明显优于直孔桩;承力盘在上部和下部时,DX桩尽管承载力相差不大,但是盘在下部时会增大桩端附近土体的应力;两个承力盘的DX桩,两盘受力比较一致,且盘受力的影响范围,在竖

关键词: DX桩     土压力盒     应力量测    

Performance of fixed beam without interacting bars

Aydin SHISHEGARAN, Behnam KARAMI, Timon RABCZUK, Arshia SHISHEGARAN, Mohammad Ali NAGHSH, Mohammreza MOHAMMAD KHANI

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1180-1195 doi: 10.1007/s11709-020-0661-0

摘要: Increasing the bending capacity of reinforced concrete (RC) elements is one of important topics in structure engineering. The goal of this study is to develop a transferred stress system (TSS) on longitudinal reinforcement bars for increasing the bending capacity of RC frames. The study is divided into two parts, i.e., experimental tests and nonlinear FE analysis. The experiments were carried out to determine the load-deflection curves and crack patterns of the ordinary and TSS fixed frame. The FE models were developed for simulating the fixed frames. The obtained load-deflection results and the observed cracks from the FE analysis and experimental tests are compared to evaluate the validation of the FE nonlinear models. Based on the validated FE models, the stress distribution on the ordinary and TSS bars were evaluated. We found the load carrying capacity and ductility of TSS fixed beam are 29.39% and 23.69% higher compared to those of the ordinary fixed beams. The crack expansion occurs on the ordinary fixed beam, although there are several crack openings at mid-span of the TSS fixed beam. The crack distribution was changed in the TSS fixed frame. The TSS fixed beam is proposed to employ in RC frame instead of ordinary RC beam for improving the performance of RC frame.

关键词: transferred stress system     bending capacity     crack opening     crack propagation     FE nonlinear model     stress distribution    

基于纤维弯曲伸长模式的Z向钢针针尖形态优化

朱建勋,何建敏,王海燕,周之刚

《中国工程科学》 2003年 第5卷 第9期   页码 18-21

摘要:

分析了整体穿刺过程中纤维弯曲伸长机理,建立了钢针的力学模型,分别讨论了作用在针尖上的最大弯曲正应力、最大剪切应力以及穿刺阻力与针尖半径和针尖长度之间的关系,然后根据获得的结果对钢针针尖的形状进行了优化。

关键词: 整体穿刺     弯曲正应力     剪切应力     针尖半径     针尖长度     优化    

Modeling of shear walls using finite shear connector elements based on continuum plasticity

Ulf Arne GIRHAMMAR, Per Johan GUSTAFSSON, Bo KÄLLSNER

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 143-157 doi: 10.1007/s11709-016-0377-3

摘要: Light-frame timber buildings are often stabilized against lateral loads by using diaphragm action of roofs, floors and walls. The mechanical behavior of the sheathing-to-framing joints has a significant impact on the structural performance of shear walls. Most sheathing-to-framing joints show nonlinear load-displacement characteristics with plastic behavior. This paper is focused on the finite element modeling of shear walls. The purpose is to present a new shear connector element based on the theory of continuum plasticity. The incremental load-displacement relationship is derived based on the elastic-plastic stiffness tensor including the elastic stiffness tensor, the plastic modulus, a function representing the yield criterion and a hardening rule, and function representing the plastic potential. The plastic properties are determined from experimental results obtained from testing actual connections. Load-displacement curves for shear walls are calculated using the shear connector model and they are compared with experimental and other computational results. Also, the ultimate horizontal load-carrying capacity is compared to results obtained by an analytical plastic design method. Good agreements are found.

关键词: shear walls     wall diaphragms     finite element modelling     plastic shear connector     analytical modelling     experimental comparison    

Global sensitivity analysis of certain and uncertain factors for a circular tunnel under seismic action

Nazim Abdul NARIMAN, Raja Rizwan HUSSAIN, Ilham Ibrahim MOHAMMAD, Peyman KARAMPOUR

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1289-1300 doi: 10.1007/s11709-019-0548-0

摘要: There are many certain and uncertain design factors which have unrevealed rational effects on the generation of tensile damage and the stability of the circular tunnels during seismic actions. In this research paper, we have dedicated three certain and four uncertain design factors to quantify their rational effects using numerical simulations and the Sobol’s sensitivity indices. Main effects and interaction effects between the design factors have been determined supporting on variance-based global sensitivity analysis. The results detected that the concrete modulus of elasticity for the tunnel lining has the greatest effect on the tensile damage generation in the tunnel lining during the seismic action. In the other direction, the interactions between the concrete density and both of concrete modulus of elasticity and tunnel diameter have appreciable effects on the tensile damage. Furthermore, the tunnel diameter has the deciding effect on the stability of the tunnel structure. While the interaction between the tunnel diameter and concrete density has appreciable effect on the stability process. It is worthy to mention that Sobol’s sensitivity indices manifested strong efficiency in detecting the roles of each design factor in cooperation with the numerical simulations explaining the responses of the circular tunnel during seismic actions.

关键词: shear waves     Sobol’s sensitivity indices     maximum principal stress     maximum overall displacement     tensile damage    

Nonlinear numerical simulation of punching shear behavior of reinforced concrete flat slabs with shear-heads

Dan V. BOMPA, Ahmed Y. ELGHAZOULI

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 331-356 doi: 10.1007/s11709-019-0596-5

摘要: This paper examines the structural response of reinforced concrete flat slabs, provided with fully-embedded shear-heads, through detailed three-dimensional nonlinear numerical simulations and parametric assessments using concrete damage plasticity models. Validations of the adopted nonlinear finite element procedures are carried out against experimental results from three test series. After gaining confidence in the ability of the numerical models to predict closely the full inelastic response and failure modes, numerical investigations are carried out in order to examine the influence of key material and geometric parameters. The results of these numerical assessments enable the identification of three modes of failure as a function of the interaction between the shear-head and surrounding concrete. Based on the findings, coupled with results from previous studies, analytical models are proposed for predicting the rotational response as well as the ultimate strength of such slab systems. Practical recommendations are also provided for the design of shear-heads in RC slabs, including the embedment length and section size. The analytical expressions proposed in this paper, based on a wide-ranging parametric assessment, are shown to offer a more reliable design approach in comparison with existing methods for all types of shear-heads, and are suitable for direct practical application.

关键词: non-linear numerical modelling     concrete damage plasticity     RC flat slabs     shear-heads     punching shear    

Behaviour of self-centring shear walls——A state of the art review

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 53-77 doi: 10.1007/s11709-022-0850-0

摘要: The application of unbonded post-tensioning (PT) in structural walls has led to the development of advanced self-centring (rocking) shear wall systems that has significant advantages, including accelerated construction due to the incorporation of prefabricated elements and segmental construction for different materials (e.g., concrete, masonry, and timber), reduced residual drifts, and little damage upon extreme seismic and wind loads. Concrete, masonry, and timber are often used for the construction of unbonded PT structural wall systems. Despite extensive research since the 1980s, there are no well-established design guidelines available on the shear wall configuration with the required energy dissipation system, joint’s locations and acceptance criteria for shear sliding, confinement, seismic performance factors, PT loss, PT force range and residual drifts of shear walls subjected to lateral loads. In this research a comprehensive state-of-the-art literature review was performed on self-centring shear wall system. An extensive study was carried out to collect a database of 100 concrete, masonry, and self-centring shear wall tests from the literature. The established database was then used to review shear walls’ configurations, material, and components to benchmark requirements applicable for design purposes. The behaviour of concrete, masonry and timber shear walls were compared and critically analysed. The general behaviour, force-displacement performance of the walls, ductility, and seismic response factors, were critically reviewed and analysed for different self-centring wall systems to understand the effect of different parameters including configurations of the walls, material used for construction of the wall (concrete, masonry, timber) and axial stress ratio. The outcome of this research can be used to better understand the behaviour of self-centring wall system in order to develop design guidelines for such walls.

关键词: self-centring shear walls     rocking walls     energy dissipation     seismic performance factors     PT loss     residual drift    

第三沉降带应力场研究

闫治涛,刘建中,邱金平, 金丽华

《中国工程科学》 2009年 第11卷 第2期   页码 33-35

摘要:

介绍了第三沉降带的分布,监测得出的大量人工裂缝方向数据及由人工裂缝方向数据统计得出的 最大水平主应力方向。结果表明,第三沉降带由北向南绵延1 500 km,最大水平主应力方向大体稳定,分布在 55°~75° NE范围,多为65° NE。由监测结果可以判断,第三沉降带的构造应力方向是南亚板块及菲律宾板块 共同作用的结果。

关键词: 微地震法人工裂缝监测     第三沉降带     最大水平主应力方向     压裂施工    

On braced trapezoidal corrugated steel shear panels: An experimental and numerical study

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 396-410 doi: 10.1007/s11709-023-0934-5

摘要: In this study, a new system consisting of a combination of braces and steel infill panels called the braced corrugated steel shear panel (BCSSP) is presented. To obtain the hysteretic behavior of the proposed system, the quasi-static cyclic performances of two experimental specimens were first evaluated. The finite element modeling method was then verified based on the obtained experimental results. Additional numerical evaluations were carried out to investigate the effects of different parameters on the system. Subsequently, a relationship was established to estimate the buckling shear strength of the system without considering residual stresses. The results obtained from the parametric study indicate that the corrugated steel shear panel (CSSP) with the specifications of a = 30 mm, t = 2 mm, and θ = 90° had the highest energy dissipation capacity and ultimate strength while the CSSP with the specifications of a = 30 mm, t = 2 mm, and θ = 30° had the highest initial stiffness. It can thus be concluded that the latter CSSP has the best structural performance and that increasing the number of corrugations, corrugation angle, and plate thickness and decreasing the sub-panel width generally enhance the performance of CSSPs in terms of the stability of their hysteretic behaviors.

关键词: trapezoidal corrugated plate     steel shear panel     braced steel shear panel     experimental study     buckling resistance.    

标题 作者 时间 类型 操作

Shear stress distribution prediction in symmetric compound channels using data mining and machine learning

Zohreh SHEIKH KHOZANI, Khabat KHOSRAVI, Mohammadamin TORABI, Amir MOSAVI, Bahram REZAEI, Timon RABCZUK

期刊论文

Prediction of the shear wave velocity

Amoroso SARA

期刊论文

An investigation on stress distribution effect on multi- piezoelectric energy harvesters

Hailu YANG, Dongwei CAO

期刊论文

Bridging finite element and deep learning: High-resolution stress distribution prediction in structural

Hamed BOLANDI; Xuyang LI; Talal SALEM; Vishnu Naresh BODDETI; Nizar LAJNEF

期刊论文

Shear assessment of compression flanges of structural concrete T-beams

Bj?rn SCHüTTE,Viktor SIGRIST

期刊论文

非饱和土的塑性体应变与剪应变的相互作用原理

王靖涛

期刊论文

DX桩桩周土应力场分布的模型试验研究

唐松涛,陈立宏,袁希雨

期刊论文

Performance of fixed beam without interacting bars

Aydin SHISHEGARAN, Behnam KARAMI, Timon RABCZUK, Arshia SHISHEGARAN, Mohammad Ali NAGHSH, Mohammreza MOHAMMAD KHANI

期刊论文

基于纤维弯曲伸长模式的Z向钢针针尖形态优化

朱建勋,何建敏,王海燕,周之刚

期刊论文

Modeling of shear walls using finite shear connector elements based on continuum plasticity

Ulf Arne GIRHAMMAR, Per Johan GUSTAFSSON, Bo KÄLLSNER

期刊论文

Global sensitivity analysis of certain and uncertain factors for a circular tunnel under seismic action

Nazim Abdul NARIMAN, Raja Rizwan HUSSAIN, Ilham Ibrahim MOHAMMAD, Peyman KARAMPOUR

期刊论文

Nonlinear numerical simulation of punching shear behavior of reinforced concrete flat slabs with shear-heads

Dan V. BOMPA, Ahmed Y. ELGHAZOULI

期刊论文

Behaviour of self-centring shear walls——A state of the art review

期刊论文

第三沉降带应力场研究

闫治涛,刘建中,邱金平, 金丽华

期刊论文

On braced trapezoidal corrugated steel shear panels: An experimental and numerical study

期刊论文